Newsweek: периодическая таблица химических элементов началась не с гениального Менделеева

Reuters
В 1869 год российский учёный Дмитрий Менделеев выписал известные химические элементы на карточки, а затем расположил их по столбцам и строкам в соответствии с их химическими и физическими свойствами, в результате чего появилась периодическая таблица химических элементов. Однако, как пишет Newsweek, началась таблица не с гениального Менделеева, расположить химические элементы в определённом порядке до него пытались многие.
Создание периодической таблицы химических элементов ставят в заслугу русскому химику Дмитрию Менделееву, который в 1869 году выписал известные элементы  на карточки, а затем расположил их по столбцам и строкам в соответствии с их химическими и физическими свойствами. В ознаменование 150-летия этого поворотного момента в науке ООН провозгласила 2019 год Международным годом периодической таблицы химических элементов. Однако, как пишет Newsweek, на самом деле периодическая таблица началась не с Менделеева. 
 
Как продолжает издание, расположить химические элементы в определённом порядке пытались многие. За несколько десятков лет до этого химик Джон Далтон попытался упорядочить элементы в таблицу, а также придумать для них некоторые довольно интересные символы, которые не «прижились». А всего за несколько лет до того, как Менделеев взялся за дело со своей колодой самодельных карточек, Джон Ньюлендс также создал таблицу, распределив элементы в соответствии с их свойствами. 
 
Но гениальность Менделеева заключалась в том, что кое-какие элементы он просто не включил в свою таблицу. Он понимал, что некоторых элементов не хватает, но они будут открыты. Поэтому там, где Далтон, Ньюлендс и другие включили в таблицы то, что было известно, Менделеев оставил место для неизвестного. Ещё более удивительно то, что он точно предсказал свойства недостающих элементов. 
 
Например, рядом с символом Al есть пустая клетка для неизвестного металла. Менделеев предсказал, что у него будет атомная масса 68, плотность шесть граммов на кубический сантиметр и очень низкая температура плавления. Шесть лет спустя Поль Эмиль Лекок де Буабодран открыл галлий и, конечно же, вписал его в таблицу прямо в свободную клетку с атомной массой 69,7, плотностью 5,9 г/см3 и температурой плавления настолько низкой, что он становится жидким в руке. Такие же пустые клетки в таблице Менделеев оставил для скандия, германия и технеция, который был открыт лишь в 1937 году, через 30 лет после его смерти. 
 
Однако, отмечает автор статьи, на первый взгляд таблица Менделеева не очень похожа на ту, с которой мы знакомы. Во-первых, в современной таблице есть множество элементов, которые Менделеев упустил из виду и не смог оставить для них пустые клетки. Кроме того, таблица устроена не так, как наш современный вариант этой системы, элементы в которой мы теперь располагаем в виде двухмерной таблицы — столбцов и строк. Но как только вы развернете таблицу Менделеева на 90 градусов, становится очевидным ее сходство с современным вариантом. Например, галогены — фтор, хлор, бром и йод — все оказываются рядом друг с другом. 
 
К началу XX века таблица приняла знакомую нам горизонтальную форму, и её вариант, предложенный в 1905 году Генрихом Вернером, выглядел на удивление современно. Впервые инертные газы оказались в своем знакомом сегодня положении на правом краю таблицы. Вернер также попытался последовать примеру Менделеева, оставив пробелы, хотя он довольно переусердствовал с предположениями об элементах легче водорода и ещё одном элементе, который должен был занять место между водородом и гелием.
 
Несмотря на этот довольно современный вид таблицы, предпринимались дальнейшие попытки изменить её конфигурацию. Особенно авторитетным был вариант, предложенный Шарлем Жанетом. К составлению таблицы он подошел с точки зрения физики и, используя недавно открытую квантовую теорию, создал вариант расположения элементов, основанный на электронных конфигурациях. Многие физики по-прежнему предпочитают созданную им «левостороннюю» таблицу. Интересно, что Жанет тоже оставил свободные клетки для элементов — вплоть до 120, несмотря на то, что в то время было известно только 92 элемента. 
 
Современная таблица фактически представляет собой непосредственную доработку варианта, предложенного Жанетом. Щелочные металлы (группа, на первом месте в которой находится литий) и щелочноземельные металлы (группа, начинающаяся с бериллия) были перенесены с крайней правой стороны на левый край таблицы, в результате чего получилась периодическая таблица очень широкая по виду. Проблема с таблицей такой конфигурации заключается в том, что она не помещается на странице или плакате, поэтому — в основном по эстетическим причинам — элементы f-блока обычно выносятся за пределы основной таблицы и помещаются под ней. Именно так и появился вариант признаваемой сегодня периодической таблицы. 
 
Однако, как заключает автор статьи, это не значит, что люди не пытаются создать другие конфигурации таблицы, зачастую пытаясь продемонстрировать взаимосвязи между элементами, которые не являются очевидными в обычной таблице. Существуют буквально сотни вариантов таблицы, среди которых особенно популярны спиральные и трехмерные конфигурации, не говоря уже о более шутливых вариантах. Всё это показывает, как периодическая таблица элементов стала традиционным, культовым символом науки.   
Материалы ИноТВ содержат оценки исключительно зарубежных СМИ и не отражают позицию RT