Кремниевые наночастицы: российские физики разработали новую технологию изготовления маркеров для медицинской диагностики
Российские физики разработали новую технологию изготовления маркеров для медицинской диагностики
- Gettyimages.ru
- © praetorianphoto
Сотрудники Московского университета (МГУ имени М.В. Ломоносова) и Института прикладной физики РАН (Нижний Новгород) разработали новую технологию изготовления биомаркеров для медицинской диагностики. Об этом сообщается в журнале «Квантовая электроника».
В науке кремний известен не только как основа микросхем и солнечных элементов. Исследователи проявляют интерес к этому дешёвому технологичному материалу и в биомедицинских целях. Сверхмалые частицы кремния (наноструктурированный кремний) применяются для диагностики тканей и клеток, а также в терапии.
«Мы разработали технологию производства наноструктурированного кремния для медицинской диагностики. Частицы кремния являются маркерами, которые позволят увидеть скрытые в непрозрачной среде организма структурные неоднородности, например опухоли», — заявил в беседе с RT основной автор работы, доцент кафедры общей физики и молекулярной электроники физического факультета МГУ Станислав Заботнов.
По его словам, проникающие в организм наночастицы могут накапливаться в злокачественных новообразованиях в организме, и это возможно обнаружить с помощью специальных оптических средств мониторинга.
Научной проблемой было отсутствие эффективной технологии производства нетоксичного наноструктурированного (размером менее 100 нм) кремния, подходящего для относительно безопасного введения в организм и последующего выведения. Размол кремниевых структур в большинстве случаев не позволял получить кластеры нужного размера, а с помощью коллоидного химического синтеза наночастицы получались с большим количеством токсичных примесей.
Задачу производства безопасных частиц нужного размера удалось решить методом импульсной лазерной абляции кремния в жидкостях и газах — «обстрела» частиц кремния импульсами лазера. Учёные смогли создать маркеры заданной величины, в том числе в единицы и десятки нанометров, однако значительной проблемой было недостаточное, относительно малое количество наночастиц на выходе.
Однако это ограничение преодолели, применив способ производства исходных плёнок пористого кремния вместо обычно используемых кристаллических пластин кремния. С помощью простого и дешёвого метода электрохимического травления удалось получить материал, который повысил массовый выход кремниевых наночастиц в разы, отметили исследователи. Далее они приступили к первым испытаниям.
«Изготовленные с помощью нашей технологии кремниевые наночастицы мы осадили на поверхность агарового геля, имитирующего биологическую ткань. Благодаря присущему частицам сильному рассеянию света мы получили высококонтрастные изображения неоднородностей. Это важный шаг в решении задач биомедицинской диагностики — визуализации биологических и биоподобных тканей», — отметил Заботнов.
- Слева прозрачный агаровый гель без биомаркеров, справа – с внедрёнными кремниевыми наночастицами
- © МГУ им. М.В. Ломоносова / Институт прикладной физики РАН
Как подчеркнул учёный, для наблюдения за внедрёнными частицами применялся один из самых безвредных для человека методов визуализации биологических объектов — метод трёхмерной оптической когерентной томографии. Сам кремний также, по его словам, относительно безопасен. В отличие от часто используемых в качестве маркеров радиоактивных частиц он не оказывает вредного воздействия на окружающие ткани и хорошо выводится из организма.
Дальнейшие исследования новой технологии были приостановлены из-за коронавирусной пандемии, но продолжатся в экспериментах на животных в 2021 году, сообщил Станислав Заботнов.